97 | 0 | 95 |
下载次数 | 被引频次 | 阅读次数 |
植物雄核发育是植物体的花药或小孢子在离体培养过程中,小孢子离开原来的配子体发育途径进入胚胎发育途径,形成小孢子胚进而形成单倍体的过程,是产生双单倍体的重要过程。在作物育种过程中可以利用雄核发育再生植株进行加倍,有效缩短育种周期,提高目标基因型的选择效率,快速获得稳定的纯系植株。植物雄核发育的阶段可分为小孢子胚性能力的获得、小孢子分裂形成多细胞结构、小孢子胚胎形成时期,这些过程受植物基因型、供体植株生长条件和生理状态以及诱导条件等因素的影响。与体胚发生类似,植物雄核发育是一系列基因在时空顺序上表达调控的结果,包括胚胎能力获得相关调节基因、响应胁迫相关基因、抑制配子体途径基因。本研究主要从雄核发育的各个阶段、影响因素以及不同阶段的基因表达调控这三个方面,对植物雄核发育的研究进展进行综述和展望,为植物单倍体育种提供理论依据。
Abstract:Plant androgenesis is the most commonly used method to produce doubled haploid,in which the anther or microspore of a plant deviates from the original gametophyte development pathway and enters the embryo development pathway,forming microspore embryo and then haploid plant. It can be used to shorten the breeding cycle,improve the selection efficiency of target genotypes,and quickly obtain stable pure line plants during crop breeding. The stages of androgenesis in plants can be divided into the acquisition of embryogenic ability of microspore,the division of microspore into multicellular structure,and the stage of microspore embryogenesis. These processes are affected by plant genotype,growth condition and physiological state of the donor plant,induction conditions and other factors. In this paper,the research progress of the stages,the influencing factors and the regulation of gene expression in different stages of plant androgenesis was reviewed,which would provide theoretical basis for plant haploid breeding.
[1] FORSTER B P,HEBERLE-BORS E,KASHA K J,et al.The resurgence of haploids in higher plants[J]. Trends Plant Sci,2007,12(8):368-375.
[2]陈海强,刘会云,王轲,等.植物单倍体诱导技术发展与创新[J].遗传,2020,42(5):466-482.
[3] SEGUí-SIMARRO J M,TESTILLANO P S,RISUE?O M C. Hsp70 and Hsp90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L[J]. J Struct Biol,2003,142(3):379-391.
[4] HARLAND S C. A note on a peculiar type of“rogue”in Sea Island cotton[J]. Agr News Barbados,1920(19):29.
[5] GUHA S,MAHESHWARI S C. In vitro production of embryos from anthers of Datura[J]. Nature,1964,204:497.
[6] GERMANàM A. Gametic embryogenesis and haploid technology as valuable support to plant breeding[J].Plant Cell Rep,2011,30(5):839-857.
[7]王炜,杨随庄.高等植物小孢子胚发生的启动[J].生物技术通报,2011,27(1):14-20.
[8]李贤,姚泉洪,彭日荷,等.高等植物的雄核发育[J].植物生理学通讯,2008,44(3):571-577.
[9] FAN Z,ARMSTRONG K C,KELLER W A. Development of microspores in vivo and in vitro in Brassica napus L[J]. Protoplasma,1988,147(2/3):191-199.
[10]李婷婷,马蓉丽,成妍,等.蔬菜作物小孢子胚胎发生机制研究进展[J].北方园艺,2014(3):174-177.
[11]BINAROVA P,HAUSE G,CENKLOVáV,et al. A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L[J]. Sex Plant Reprod,1997,10(4):200-208.
[12] AIONESEI T,TOURAEV A,HEBERLE-BORS E. Pathways to microspore embryogenesis[J]. Haploids in Crop Improvement II,2005,56:11-34.
[13] SUNDERLAND N,WICKS F M. Embryoid formation in pollen grains of Nicotiana tabacum[J]. J Exp Bot,1971,22(1):213-226.
[14] SUNDERLAND N,COLLINS G B,DUNWELL J M.The role of nuclear fusion in pollen embryogenesis of Datura innoxia Mill[J]. Planta,1974,117(3):227-241.
[15]REYNOLDS T L. A cytological analysis of microspores of Triticum aestivum(Poaceae)during normal ontogeny and induced embryogenic development[J]. Am J Bot,1993,80(5):569-576.
[16] KASHA K J,SIMION E,ORO R,et al. An improved in vitro technique for isolated microspore culture of barley[J]. Euphytica,2002,120:45-54.
[17] RAGHAVAN V. Role of the generative cell in androgenesis in henbane[J]. Science,1976,191(4225):388-389.
[18]王诗忆,黄奕孜,李舟阳,等.植物体细胞胚胎发生及其分子调控机制研究进展[J].浙江农林大学学报,2022,39(1):223-232.
[19] WANG M,VAN BERGEN S,VAN DUIJN B. Insights into a key developmental switch and its importance for efficient plant breeding[J]. Plant Physiol,2000,124(2):523-530.
[20] PETRASH N V,KAPKO T N,SOVETOV V V. Study of wheat(Triticum aestivum L.)breeding material potential for in vitro androgenesis[J]. Vavilovskii Zhurnal Genet Selektsii,2023,27(8):1022-1030.
[21]王汉中,王新发,刘贵华,等.甘蓝型杂交油菜亲本的小孢子培养技术研究[J].中国油料作物学报,2004,26(1):1-4.
[22]张梦璐,张红,王超楠,等.抗生素对耐抽薹大白菜小孢子胚胎发生的影响[J].中国蔬菜,2023(7):45-51.
[23]储玉凡,陈野,付文苑,等.芥菜小孢子培养及染色体加倍技术体系的优化[J].华中农业大学学报,2024,43(2):144-153.
[24] TOURAEV A,PFOSSER M,HEBERLE-BORS E. The microspore:a haploid multipurpose cell[M]. Advances in Botanical Research,2001:53-109.
[25]何勇刚,林刚,刘曼西,等.小麦不同生理状态的幼穗和幼胚盾片与诱导分化能力关系的研究[J].武汉植物学研究,2001,19(5):363-368.
[26] SHARIATPANAHI M E,BAL U,HEBERLE-BORS E,et al. Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis[J]. Physiol Plant,2006,127(4):519-534.
[27]苏贺楠,韩风庆,杨丽梅,等.结球甘蓝小孢子培养条件优化及高代自交系胚状体诱导研究[J].中国蔬菜,2018(4):30-36.
[28]杨延红,宋桂全,李孔栋,等.郁金香小孢子发育与花粉萌发特性研究[J].西北农林科技大学学报(自然科学版),2022,50(6):93-100.
[29] ZHENG M Y. Microspore culture in wheat(Triticum aestivum)-doubled haploid production via induced embryogenesis[J]. Plant Cell Tissue Organ Cult,2003,73(3):213-230.
[30]伍健缤,陈坤豪,陈木溪,等.芸薹属蔬菜游离小孢子培养研究进展[J].农学学报,2022,12(3):44-49.
[31]付亮,徐鹏亮,李洋,等.小麦小孢子培养影响因素研究[J].麦类作物学报,2024,44(8):1010-1018.
[32]李智军,曾晶,谭铭喜,等.芥蓝游离小孢子胚胎发生途径及2,4-D对成胚的影响[J].园艺学报,2021,48(8):1605-1618.
[33] HASHEMI M,MOIENI A,SABET M S. Improving the isolated microspore culture in eggplant(Solanum melongena L.)with amino acid nutrition[J]. PLoS One,2023,18(6):e0286809.
[34] VALERO-RUBIRA I,CASTILLO A M,BURRELL Má,et al. Microspore embryogenesis induction by mannitol and TSA results in a complex regulation of epigenetic dynamics and gene expression in bread wheat[J]. Front Plant Sci,2023,13:1058421.
[35]高润红,郭桂梅,何婷,等.大麦旗叶距对小孢子发育时期、愈伤组织诱导以及绿苗再生的影响[J].南京农业大学学报,2021,44(1):36-41.
[36]刘晓东,吴芳,孟川,等.四倍体大白菜游离小孢子培养技术[J].园艺学报,2023,50(12):2641-2652.
[37] CHEN Y R,WANG Y,XU L,et al. Effects of genotype and culture conditions on microspore embryogenesis in radish(Raphanus sativus L.)[J]. Mol Breed,2022,42(8):43.
[38] GAO R H,ZONG Y J,ZHANG S W,et al. Efficient isolated microspore culture protocol for callus induction and plantlet regeneration in Japonica rice(Oryza sativa L.)[J]. Plant Methods,2024,20(1):76.
[39] GIACANI L,BRANDT S L,PURAY-CHAVEZ M,et al.Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species,subspecies,and strains[J]. J Bacteriol,2012,194(16):4208-4225.
[40] BOUTILIER K,OFFRINGA R,SHARMA V K,et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth[J]. Plant Cell,2002,14(8):1737-1749.
[41]CHEN B J,MAAS L,FIGUEIREDO D,et al. BABY BOOM regulates early embryo and endosperm development[J]. Proc Natl Acad Sci USA,2022,119(25):e2201761119.
[42]NELSON-VASILCHIK K,HAGUE J P,TILELLI M,et al. Rapid transformation and plant regeneration of Sorghum(Sorghum bicolor L.)mediated by altruistic Baby boom and Wuschel2[J]. Vitro Cell Dev Biol Plant,2022,58(3):331-342.
[43] PERRY S E,LEHTI M D,FERNANDEZ D E. The MADS-domain protein AGAMOUS-like 15 accumulates in embryonic tissues with diverse origins[J]. Plant Physiol,1999,120(1):121-130.
[44] ZHAI L L,XU L,WANG Y,et al. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish(Raphanus sativus L.)[J]. Sci Rep,2016,6:21652.
[45]JHA P,KUMAR V. BABY BOOM(BBM):a candidate transcription factor gene in plant biotechnology[J]. Biotechnol Lett,2018,40(11/12):1467-1475.
[46] LOTAN T,OHTO M A,YEE K M,et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells[J]. Cell,1998,93(7):1195-1205.
[47] STONE S L,KWONG L W,YEE K M,et al. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development[J]. Proc Natl Acad Sci USA,2001,98(20):11806-11811.
[48]WóJCIKOWSKA B,JASKó?A K,G SIOREK P,et al.LEAFY COTYLEDON2(LEC2)promotes embryogenic induction in somatic tissues of Arabidopsis,via YUCCAmediated auxin biosynthesis[J]. Planta,2013,238(3):425-440.
[49]XIN W,WANG Z C,LIANG Y,et al. Dynamic expression reveals a two-step patterning of WUS and CLV3 during axillary shoot meristem formation in Arabidopsis[J]. J Plant Physiol,2017,214:1-6.
[50]ZUO J R,NIU Q W,FRUGIS G,et al. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis[J]. Plant J,2002,30(3):349-359.
[51] ZHENG W,ZHANG X Y,YANG Z R,et al. AtWuschel promotes formation of the embryogenic callus in Gossypium hirsutum[J]. PLoS One,2014,9(1):e87502.
[52] SINGH A,KHURANA P. Ectopic expression of Triticum aestivum SERK genes(TaSERKs)control plant growth and development in Arabidopsis[J]. Sci Rep,2017,7(1):12368.
[53] SCHMIDT E D,GUZZO F,TOONEN M A,et al. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos[J]. Development,1997,124(10):2049-2062.
[54]BAUDINO S,HANSEN S,BRETTSCHNEIDER R,et al.Molecular characterisation of two novel maize LRR receptor-like kinases,which belong to the SERK gene family[J]. Planta,2001,213(1):1-10.
[55] LI H Q,CAI Z P,WANG X J,et al. SERK receptor-like kinases control division patterns of vascular precursors and ground tissue stem cells during embryo development in Arabidopsis[J]. Mol Plant,2019,12(7):984-1002.
[56] MüLLER S. Update:on selected ROP cell polarity mechanisms in plant cell morphogenesis[J]. Plant Physiol,2023,193(1):26-41.
[57] TOURAEV A,VICENTE O,HEBERLE-BORS E. Initiation of microspore embryogenesis by stress[J]. Trends Plant Sci,1997,2(8):297-302.
[58] FIERS M,HAUSE G,BOUTILIER K,et al. Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem[J]. Gene,2004,327(1):37-49.
[59]TESTILLANO P S,CORONADO M J,SEGUíJ M,et al.Defined nuclear changes accompany the reprogramming of the microspore to embryogenesis[J]. J Struct Biol,2000,129(2/3):223-232.
[60]GAGLIARDI D,BRETON C,CHABOUD A,et al. Expression of heat shock factor and heat shock protein 70genes during maize pollen development[J]. Plant Mol Biol,1995,29(4):841-856.
[61] RIVAS-SENDRA A,CALABUIG-SERNA A,SEGUí-SIMARRO J M. Dynamics of calcium during In vitro microspore embryogenesis and In vivo microspore development in Brassica napus and Solanum melongena[J]. Front Plant Sci,2017,8:1177.
[62]VRINTEN P L,NAKAMURA T,KASHA K J. Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley(Hordeum vulgare)L[J].Plant Mol Biol,1999,41(4):455-463.
[63] HOEKSTRA S,VAN BERGEN S,VAN BROUWERSHAVEN I R,et al. Androgenesis in Hordeum vulgare L.:effects of mannitol,calcium and abscisic acid on anther pretreatment[J]. Plant Sci,1997,126(2):211-218.
[64]REYNOLDS T L,CRAWFORD R L. Changes in abundance of an abscisic acid-responsive,early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat(Triticum aestivum)[J]. Plant Mol Biol,1996,32(5):823-829.
[65] MAHESHWARI S C,TYAGI A K,MALHOTRA K,et al. Induction of haploidy from pollen grains in angiosperms:the current status[J]. Theor Appl Genet,1980,58(5):193-206.
[66] DATTA R,CHAMUSCO K C,CHOUREY P S. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize[J]. Plant Physiol,2002,130(4):1645-1656.
[67] DE F MARASCHIN S,VENNIK M,LAMERS G E M,et al. Time-lapse tracking of barley androgenesis reveals position-determined cell death within pro-embryos[J].Planta,2005,220(4):531-540.
[68] LONG W H,DONG B N,WANG Y H,et al. FLOURY ENDOSPERM8,encoding the UDP-glucose pyrophosphorylase 1,affects the synthesis and structure of starch in rice endosperm[J]. J Plant Biol,2017,60(5):513-522.
[69] LEE E J,KOIZUMI N,SANO H. Identification of genes that are up-regulated in concert during sugar depletion in Arabidopsis[J]. Plant Cell Environ,2004,27(3):337-345.
[70] DIELEN A S,BADAOUI S,CANDRESSE T,et al. The ubiquitin/26S proteasome system in plant-pathogen interactions:a never-ending hide-and-seek game[J]. Mol Plant Pathol,2010,11(2):293-308.
[71] YU F,PARK S,RODERMEL S R. The Arabidopsis FtsH metalloprotease gene family:interchangeability of subunits in chloroplast oligomeric complexes[J]. Plant J,2004,37(6):864-876.
[72] YAO L,ZHANG Y,LIU C X,et al. OsMATL mutation induces haploid seed formation in indica rice[J]. Nat Plants,2018,4(8):530-533.
[73]ALAM M,BAENZIGER P S,FRELS K. Emerging trends in wheat(Triticum spp.)breeding:implications for the future[J]. Front Biosci(Elite Ed),2024,16(1):2.
[74]PATIAL M,CHAUHAN R,CHAUDHARY H K,et al.Au-courant and novel technologies for efficient doubled haploid development in barley(Hordeum vulgare L.)[J].Crit Rev Biotechnol,2023,43(4):575-593.
[75]DERMAIL A,MITCHELL M,FOSTER T,et al. Haploid identification in maize[J]. Front Plant Sci,2024,15:1378421.
[76]FANG S Y,MA Y Y,LIU Z Y,et al. Successful application of microspore culture in pakchoi(Brassica campestris L. ssp. chinensis Makino var. communis Tsen et Lee)for hybrid breeding[J]. Protoplasma,2023,260(2):545-555.
[77]李莹莹,何晓莹,王敬乔,等.甘蓝型油菜小孢子培养技术及单倍体诱导系创建研究进展[J/OL].(2024-02-22)[2024-08-19]. http://kns. cnki. net/kcms/detail/46. 1068.S. 20240221. 2115. 019. html.
[78] LI Y,LIN Z,YUE Y,et al. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize[J]. Nat Plants,2021,7(12):1579-1588.
[79] WANG D,ZHONG Y,FENG B,et al. The RUBY reporter enables efficient haploid identification in maize and tomato[J]. Plant Biotechnol J,2023,21(8):1707-1715.
[80]代金英,郭桂梅,程新杰,等.水稻F1小孢子培养再生DH系的耐盐性鉴定及稻米品质分析[J].大麦与谷类科学,2022,39(6):1-5,10.
[81]李强.生物技术在林木育种中的应用[J].现代园艺,2023(1):102-104.
[82] WELSCH R,TOURAEV A,PALME K. Small molecules mediate cellular reprogramming across two Kingdoms[J]. J Exp Bot,2021,72(22):7645-7647.
基本信息:
DOI:
中图分类号:Q944.4
引用信息:
[1]孙思敏,夏林杰,王彦芹等.植物雄核发育分子机制的研究进展[J].塔里木大学学报,2025,37(01):1-10.
基金信息:
新疆南疆重点产业创新发展支撑计划项目(2022DB012)